Stat3 Inhibition Attenuates Mechanical Allodynia through Transcriptional Regulation of Chemokine Expression in Spinal Astrocytes
نویسندگان
چکیده
BACKGROUND Signal transducer and activator of transcription 3 (Stat3) is known to induce cell proliferation and inflammation by regulating gene transcription. Recent studies showed that Stat3 modulates nociceptive transmission by reducing spinal astrocyte proliferation. However, it is unclear whether Stat3 also contributes to the modulation of nociceptive transmission by regulating inflammatory response in spinal astrocytes. This study aimed at investigating the role of Stat3 on neuroinflammation during development of pain in rats after intrathecal injection of lipopolysaccharide (LPS). METHODS Stat3 specific siRNA oligo and synthetic selective inhibitor (Stattic) were applied to block the activity of Stat3 in primary astrocytes or rat spinal cord, respectively. LPS was used to induce the expression of proinflammatory genes in all studies. Immunofluorescence staining of cells and slices of spinal cord was performed to monitor Stat3 activation. The impact of Stat3 inhibition on proinflammatory genes expression was determined by cytokine antibody array, enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mechanical allodynia, as determined by the threshold pressure that could induce hind paw withdrawal after application of standardized von Frey filaments, was used to detect the effects of Stat3 inhibition after pain development with intrathecal LPS injection. RESULTS Intrathecal injection of LPS activated Stat3 in reactive spinal astrocytes. Blockade of Stat3 activity attenuated mechanical allodynia significantly and was correlated with a lower number of reactive astrocytes in the spinal dorsal horn. In vitro study demonstrated that Stat3 modulated inflammatory response in primary astrocytes by transcriptional regulation of chemokine expression including Cx3cl1, Cxcl5, Cxcl10 and Ccl20. Similarly, inhibition of Stat3 reversed the expression of these chemokines in the spinal dorsal horn. CONCLUSIONS Stat3 acted as a transcriptional regulator of reactive astrocytes by modulating chemokine expression. Stat3 regulated inflammatory response in astrocytes and contributed to pain modulation. Blockade of Stat3 represents a new target for pain control.
منابع مشابه
Analgesic Effect of Acupuncture Is Mediated via Inhibition of JNK Activation in Astrocytes after Spinal Cord Injury
Acupuncture (AP) has been used worldwide to relieve pain. However, the mechanism of action of AP is poorly understood. Here, we found that AP relieved neuropathic pain (NP) by inhibiting Jun-N-terminal kinase (JNK) activation in astrocytes after spinal cord injury (SCI). After contusion injury which induces the below-level (L4-L5) NP, Shuigou (GV26) and Yanglingquan (GB34) acupoints were applie...
متن کاملCurcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling
Curcumin has been shown to possess strong anti-inflammatory activity in many diseases. It has been demonstrated that the janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) cascade and the NAcht leucine-rich-repeat protein 1 (NALP1) inflammasome are important for the synthesis of Pro-Interleukin (IL)-1β and the processing of the inactive protein to its mature form, ...
متن کاملYokukansan Improves Mechanical Allodynia through the Regulation of Interleukin-6 Expression in the Spinal Cord in Mice with Neuropathic Pain
Neuropathic pain is caused by nerve injury. Yokukansan (Yi-Gan San), a traditional Japanese (Kampo) medicine, has been widely used for neuropathic pain control. However, the analgesic mechanisms remain unknown. In this study, we investigated the analgesic mechanisms of yokukansan in a mouse model of neuropathic pain. Partial sciatic nerve ligation (PSL) induced mechanical allodynia in mice. Rep...
متن کاملConnexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice.
Accumulating evidence suggests that spinal cord astrocytes play an important role in neuropathic pain sensitization by releasing astrocytic mediators (e.g. cytokines, chemokines and growth factors). However, it remains unclear how astrocytes control the release of astrocytic mediators and sustain late-phase neuropathic pain. Astrocytic connexin-43 (now known as GJ1) has been implicated in gap j...
متن کاملIntrathecal lidocaine pretreatment attenuates immediate neuropathic pain by modulating Nav1.3 expression and decreasing spinal microglial activation
BACKGROUND Intrathecal lidocaine reverses tactile allodynia after nerve injury, but whether neuropathic pain is attenuated by intrathecal lidocaine pretreatment is uncertain. METHODS Sixty six adult male Sprague-Dawley rats were divided into three treatment groups: (1) sham (Group S), which underwent removal of the L6 transverse process; (2) ligated (Group L), which underwent left L5 spinal n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013